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The Bianchi identities for the P(4) = O(1, 3) | ~ *  theory of gravitation and 
electromagnetism are decomposed into the standard O(1, 3) Riemannian Bi- 
anchi identity plus an additional R 4. component. When combined with the 
Einstein-Maxwell affine field equations the R 4. components of the P(4) Bianchi 
identities imply conservation of magnetic charge and the wave equation for the 
Maxwell field strength tensor. These results are analyzed in light of the special 
geometrical postulates of the P(4) theory. We show that our development is the 
analog of the manner in which the Riemannian Bianehi identities, when 
combined with Einstein's field equations, imply conservation of stress-energy- 
momentum and the wave equation for the Lanczos H-tensor. 

1. I N T R O D U C T I O N  

A fundamen ta l  feature  o f  the general  theory  o f  relat ivi ty is tha t  by  
combin ing  Eins te in ' s  field equat ions  with the d o u b l y  con t rac ted  R ieman-  
nian Bianchi  ident i ty  one ob ta ins  an  express ion for  conserva t ion  o f  the 
s t r e s s -ene rgy-momentum tensor.  Thus,  as a consequence  o f  the geometr ica l  
mode l  o f  s t ress -energy-momentum,  one need not  inquire  under  wha t  condi -  
t ions the s t r e s s -ene rgy-momentum tensor  is conserved or  wha t  res t r ic t ions  
mus t  be required to make  it so. The  s tress-energy tensor  is conserved 
au tomat i ca l ly  as a consequence  o f  the geometry  o f  spacetime. A second 
fundamen ta l  bu t  pe rhaps  less wel l -known feature  o f  general  re la t ivi ty  is 
tha t  when the Einstein field equat ions  are  combined  with the singly 
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contracted Riemannian Bianchi identity one obtains a wave equation for 
the rank-three tensor H~  introduced by Lanczos and which bears his name 
(Lanczos, 1962). Hence this wave equation may also be considered a 
consequence of the geometry of spacetime. The fact that these two funda- 
mental features of general relativity follow from the Riemannian Bianchi 
identities is characteristic of the geometric spirit of Einstein's theory. 

In this paper we shall consider the Bianchi identities for a geometry 
which is more general than the Riemannian geometry of Einstein's theory, 
namely the affine geometry of the P(4) = O(1, 3) | R 4. theory of gravita- 
tion and electromagnetism (Norris, 1985, 1991; Kheyfets and Norris, 1988; 
Chilton and Norris, 1992). We will show that in the P(4) theory one 
obtains a conservation law and a wave equation for the electromagnetic 
field that parallels those results mentioned above for the gravitational field, 
and that these new results also follow from the translational component of 
the P(4) Bianchi identity. 

The essential new idea in the P(4) theory is to model the 4-momentum 
spaces of classical charged particles as affine spaces rather than linear 
vector spaces. In order to treat affine vectors on the same footing with 
vectors one must replace the O(1, 3) Riemannian geometry of general 
relativity with P(4) = O( 1, 3) | R 4. affine geometry. In the resulting affine 
theory one obtains the Lorentz force law as the equation for an affine 
4-momentum geodesic and, moreover, the Maxwell field equations are 
geometrized in terms of the •4. component of the P(4) curvature. The 
Bianchi identities of the P(4) curvature contain in addition to the Rieman- 
nian Bianchi identities an additional component for the R 4. curvature. It is 
our purpose in this paper to decompose these additional identities and to 
analyze their physical content in light of the Einstein-Maxwell affine field 
equations which are presented in Section 2. The emphasis of the paper is 
not only on the relations obtained in this manner, namely an expression for 
conservation of magnetic charge and the standard wave equation for the 
Maxwell field strength tensor mentioned above, but also on the fact that 
these relations occur by virtue of identities in the extended geometry and 
thereby achieve a more elevated position in the P(4) theory. Also, there are 
a number of structural parallels between the P(4) theory of electromag- 
netism and general relativity which we shall point out in the course of the 
paper. 

Section 2 begins with a brief review of the P(4) theory. For a more 
complete description of the details the reader is referred to earlier works 
(Norris, 1985, 1991; Kheyfets and Norris, 1988; Chilton and Norris, 1992). 
The bundle structure is described with particular emphasis on how basic 
quantities transform under translational gauge changes. The translational 
degrees of freedom are used to model the 4-momentum spaces of classical 
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charged particles as four-dimensional affine spaces. We are thereby enabled 
to model the Lorentz force law as the equation for an affine 4-momentum 
geodesic and in the process we identify the R 4. part of the P(4) connection 
as the negative of the Maxwell field strength tensor. This identification 
allows the geometrization of the source-free Einstein-Maxwell equations 
which are then extended to include sources. 

Section 3 is primarily concerned with the decomposition of the R 4. 
component of the P(4) Bianchi identities. First the P(4) = O(1, 3) | R 4. 
Bianchi identity on a P(4) principal fiber bundle is pulled back to the 
orthonormal frame bundle O M  using the canonical embedding map of O M  
into A M .  The pullbacks of the P(4) curvature and connection forms are 
then decomposed into their O( 1, 3) and R 4. components. The R 4. compo- 
nent of the pullback of the P(4) connection is then further decomposed 
using the results of Norris et al. (1980). The resulting equation is then 
expressed on spacetime in component form relative to some general coordi- 
nated gauge. This equation is the E4. component of the P(4) Bianchi 
identity. We then form two contractions of this equation: one contraction 
of the equation in standard form and a second contraction of the equation 
in dual form. In Section 4, we consider the contraction of the R 4. 
component of the Bianchi identity in dual form in light of the Einstein- 
Maxwell affine field equations with sources and find that conservation of 
magnetic charge is implied as a consequence of the extended geometry. A 
parallel is then drawn between this derivation and the analogous derivation 
of conservation of stress-energy-momentum in general relativity. An alter- 
nate interpretation is then suggested which depends on a different identifi- 
cation of the R 4. component of the P(4) connection. This identification 
leads to an expression for the conservation of electric (rather than of 
magnetic) charge as a consequence of the geometry of spacetime. The effect 
of this alternative, however, is that the Lorentz force law is generalized. 

In Section 5 we show that when the R 4. component of the P(4) 
Bianchi identity in standard form is combined with the Einstein-Maxwell 
affiine field equations one obtains the wave equation for the Maxwell field 
strength tensor in a curved spacetime as an identity of the P(4) geometry. 
It is shown that 4-momentum is transferred from event to event in 
spacetime by the production of ripples in the affine vector field 0 which 
defines the local zeros of affine 4-momentum. Section 6 is devoted to a 
comparison between the electromagnetic wave equation as derived in the 
P(4) theory and a similar derivation of a wave equation for the Lanczos 
tensor mentioned above. With this in mind a decomposition of the R 4. 
curvature is given which is similar in form to the decomposition of the 
Riemannian curvature tensor into the Weyl curvature tensor and terms 
involving only the Ricci tensor, the scalar curvature, and the metric. 
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A discussion of our results and conclusions are presented in Section 7. 
Also included in this section is a table which we use to make a structural 
comparison between general relativity, P(4) electrodynamics, and standard 
U(1) electrodynamics. 

2. THE P(4) THEORY OF ELECTROMAGNETIS M AND GRAVITY 

The geometrical arena of  the P(4) theory of gravitation and electro- 
magnetism is the modified affine frame bundle, AM, over a four-dimen- 
sional spacetime manifold M. Elements of AM are triples (p, e, ,  i'), where 
p ~M,  (e u = ~,2.3.4) is a linear frame at p, and i'is an affine cotangent vector, 
the "origin" of  the frame at p. This modification 3 is necessary because we 
wish to model the 4-momentum spaces of  charged particles as affine spaces 4 
and the 4-momentum is fundamentally a covector rather than a vector. The 
structure group of .riM is the affine group 4(4) = GI(4) | R 4. with group 
multiplication 

( & ,  4~) �9 (A2, 42) = (AIA2, 4~" A2 + ~2) 

for all (Al, 41), (A2, 42)~.4(4) (Norris, 1991). Since AM is bundle isomor- 
phic to A M ,  the standard affine frame bundle, we shall simplify the 
terminology and notation by referring to .riM as the affine frame bundle of  
M and denote it by A M .  Moreover, we will denote by P(4) the Poincar6 
subgroup O( 1, 3) | R 4. of 4(4). 

A M  is a principal fiber bundle over L M  with standard fiber R 4.. We 
shall refer to sections of A M  over L M  as translational gauges. A transla- 
tional gauge can be thought of, therefore, as a choice of  origin for local 
4-momentum affine frames on M. It can be shown that translational gauges 
are in one-to-one correspondence with covector fields on M (Norris, 1991). 

A generalized affine connection on A M  can always be specified 
(Kobayashi and Nomizu, 1963; Norris et al., 1980) by a pair (F, ~K) on 
spacetime, where F is a linear connection and ~K is a covariant vector 
valued one-form, where the left superscript indicates that K is represented 
in the t" translational gauge. If  the linear connection V is the Riemannian 
connection Fg of the metric tensor g, then the pair is said to represent a 
P(4) connection. Furthermore, the pair (Fg, ~K) may be used to eonstruet 

3Ordinarily, the affine frame bundle AM is the set of triples (p, ei,/'), where /" is an affine 
tangent vector. The structure group of this bundle is A(4) = Gl(4)| •4 (Kobayashi and 
Nomizu, 1963). 

4An affine space (Dodson and Poston, 1977) is a triple (S, V, 6) where S is a set, V a vector 
space, and 3: S x S ~ V such that, for 2, )3, ~?~S, (1) 6(.~, 9) + 6(9, ~?) = 6(2, ~) and (2) for all 
2eS, the map 6~(P) = 6(), .~) is a bijection. 
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the pair (R, rq)), where R is the Riemannian curvature and ~qb is a covariant 
vector-valued 2-form on spacetime, the affine or •4, component of the P(4) 
curvature. Its components are defined by 5 

rq)~. = V, ~K~.v - Vv 7Kx~ (2.1) 

Under a translational gauge t ransformat ion , / '~  2 = i ' ~  g, the R 4. compo- 
nent of the connection transforms as 6 

**=K.~ = ~K.~ + V.s~ (2.2) 

and therefore, under the same transformation, we have 

7@ ~(I) , ^ ~,. = '~,v~ - Ru~a ~ s~ (2.3) 

If  we define the contraction 
def 

~*~ = g*~(i'*u~Z) (2.4) 

then we obtain for it, from equation (2.3), the transformation law 

~ * ~ .  = ;qb --  Ru ~ s .  ( 2 . 5 )  

Physically, we shall model the local 4-momentum spaces of classical 
charged particles as four-dimensional affine spaces (Norris, 1985). In such 
a space the observed 4-momentum must always be expressed, relative to 
some local zero of affine 4-momentum. By this we mean that the observed 
4-momentum is a vector sr~ such that z~ = 8 G a~, where ~ is the affine 
4-momentum and 8 is the local zero (i.e., reference) of affine 4-momentum. 
We assume that there exists a translational gauge 8 such that, at a point 
along its trajectory in a nonzero electromagnetic field, the observed 4-mo- 
mentum of the charged particle is the same as that of an instantaneously 
comoving and freely falling uncharged particle. In other words, r2 -- 8 G a, 
where ~ is the 4-momentum per unit mass of the uncharged reference 
particle. We call 8 the zero translation gauge (Norris, 1985). 

In order to transport the local zero of 4-momentum, defined at any 
single event in spacetime, to other events in spacetime, we must utilize an 
affine transport law based on the affine covariant derivative constructed from 
the pair (F=, ~K). If  ~ is the affine 4-momentum of the charged particle, 
then we say r2 is affinely parallel along the trajectory iff D'~/Ds = 0, where 
D/Ds is the affine directional covariant derivative along the path. Written 

5For a linear connection with torsion rq~u~fv~( ;Kzv  ) 
S~v ~ = Fl~l '~. 

6The nota t ion 2 = p  ~ g  means  that  ~ = 6(p, 2) = 8~(p). 

-- Vv(TK, lu) + Su~(?K~,I), where 
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in the zero translational gauge, this definition becomes 

o 

Ds J = ~ + E(~ = 0 (2.6) 

where D / D s  is the linear directional covariant derivative and E is the electric 
charge-to-mass ratio of the particle. In order to be compatible with 
Riemannian geometry it can be shown (Norris, 1985), using the fact that 
(d/ds)[~.a]  = 0, that ~ 0. Consequently, if we identify OK with the 
negative of the electromagnetic field strength tensor we obtain the equation 

Du e 
- -  - EFUvu v = 0 (2.7) 
Ds 

Thus in the P(4) theory the Lorentz force law arises as the equation 
describing an affine 4-momentum geodesic. 

In making the identification OK = - F ,  we have implicitly assumed that 
F is the field strength tensor of standard U(1) electromagnetism; that F is 
the curl of a vector field A and therefore that magnetic charges are not 
allowed. On the other hand, the only requirement that we have for OK is 
that ~ = 0. Consequently, there is a more general form available for OK 
which is based on two potentials (Cabibbo and Ferrari, 1962), namely 

~ = -(F,v + M'v) -= -P,~ (2.8a) 

where 

Fu~ = VuA ~ - V~A u (2.8b) 

mv~ = VuB~ - VvB~ (2.8c) 

M* in (2.8a) denotes the Hodge dual of M. 
The standard Lorentz force law is obtained from (2.6) as a special case 

whenever M*v = 0. On the other hand, if M*~ # 0, we may make the 
identification OK = - F = - ( F +  M*), but then F is no longer the field 
strength tensor of standard U(1) electromagnetism. Instead ff in general 
represents the electromagnetic fields produced by both electric and magnetic 
currents. If this is the case, one may regard equation (2.7) as a generalized 
Lorentz  force  law that governs the motion of an electrically charged test 
particle in a field produced by both electric and magnetic currents. 

Based on either of these identifications we may write the source-free 
Einstein-Maxwell equations in terms of P(4) quantities as (Norris, 1985) 

0r = 0 (2.9) 

~ I = 0 (2.10) 

Rv~ -- lg .~R = ~ ~ - �88 ~ ~ (2.11) 
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We note that equation (2.11) is translationally invariant even though it 
may appear that the right-hand side is not. We have previously defined 
(Chilton and Norris, 1992) a difference tensor P;j which is translationally 
invariant. This tensor is defined by 

d e f  ^ 

Pij = 'Kij - ' K i j  = OKij 

where "K'~j is a flat ~4, connection with the property that o/~,j = 0. Thus 
(2.11) may also be written as 

1 

which is clearly translationally invariant. 
These equations may be extended to include matter sources and both 

electric and magnetic currents as follows: 

l _or , -  Or~-). ! -  ~ -  o,.-;.,~ r ,~  (2 .12)  

o ,  = -S~ (2.13) 

* * (2.14) ~u = - J ,  

where T,~, Ju, and J* represent the nonelectromagnetic parts of the 
stress-energy-momentum tensor and the electric and magnetic current 
densities, respectively, and where we have defined 

00,  1 ~ ~py - (2.15) = ~ o~/~ 

Note that if we make the identification (2.8) where M*~ ~ 0, then J* need 
not be identically zero as required by the Bianchi identity of standard U(1) 
electrodynamics. We refer to equations (2.12)-(2.14) as the Einstein- 
Maxwell affine field equations with sources. Recently it has been shown 
(Chilton and Norris, 1992) that these equations are derivable from a P(4) 
variational principle. 

3. THE R 4. COMPONENT OF THE P(4) BIANCHI IDENTITY 
AND ITS CONTRACTIONS 

The P(4) theory may be formulated directly on a subbundle of AM,  
the orthonormal affine frame bundle AOM,  a principal bundle with stan- 
dard fiber P(4) = O( 1, 3) | R 4.. Given a connection cb on this bundle, we 
may write the Bianchi identity as 

/5~ = d ~  + e3 ^ t~---0 (3.1) 

where ~ is the curvature with respect to the P(4) connection. In order to 
identify the linear and translational components of objects, we pull them 
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down to the orthonormal frame bundle over spacetime using the canonical 
embedding map 7: L M  --->AM defined by y(p, eu) = (p, e,, 0), and split 
y*(o3) and ~'*(~) into O(1, 3) and ~4, components (Kobayashi and No- 
mizu, 1963). We find 

~*(e3) = col + cot (3.2) 

~*(fi) = F2L + [2r (3.3) 

where the subscripts L and T refer to the linear [O(1, 3)] and translational 
(R 4.) parts, respectively. If  these are substituted into the pullback under 
of equation (3.1), we obtain 

y * ( O ~ )  -- DL~L + D L ~ T  + CO T A ~2 L ~ 0 (3.4) 

where D L means covariant differentiation with respect to the linear compo- 
nent of the connection, COL. Note that of the three terms on the right-hand 
side of equation (3.4), the only term which is an o(1, 3)-valued 3-form is 
the term DLDL, while the other two terms are R4*-valued 3-forms. Conse- 
quently, (3.4) implies not only the Riemannian Bianchi identity D L ~ t  = O, 
but also 

D L ~ T  + COT A ~L -- 0 (3.5) 

Equation (3.5) is the R 4. component of the P(4) Bianchi identity, which we 
will refer to as the R 4. Bianchi identity. 

It has been shown (Norris et al., 1980) that on the orthonormal frame 
bundle, the ~4, component of the P(4) connection may be further decom- 
posed as 

COT = pO + ~ (3.6) 

where p is a scalar field, 0 is the soldering 1-form on the frame bundle, and 
r is an R4*-valued tensorial 1-form, which is uniquely related to a trace-free 
type (0, 2) tensor field on spacetime. This decomposition is obtained by 
noting that COT corresponds to a type (0, 2) tensor field on spacetime. The 
pO and ~ terms correspond to the trace and trace-free parts of this tensor 
field, respectively, with respect to the spacetime metric tensor. When (3.6) 
is substituted into the structure equation for the R 4. curvature, we find that 

f~T = p O  + dp ^ 0 + DLz (3.7) 

where | is the torsion 2-form on the frame bundle. Finally, when (3.6) and 
(3.7) are inserted into (3.5) we obtain the identity 

DLf~r + z A ~ t  + P D L O  + p O  A f2 L = 0 (3.8) 
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In this paper we shall consider only the case when both p and | are zero 
and therefore (3.8) reduces to 

DL~T + Z A ~L -- 0 (3.9) 

On spacetime, in a general coordinate gauge, this equation can be written 
in component form as 

V~, ( tr ~ _ Rt,~l~(/'K)~t~] = 0 (3.10) 

Alternatively, equation (3.10) may be written in dual form as 

V.(;O) Dx + R~t~x"(rK),,~, = 0 (3.11) 

where we have defined 

and 

~.(i),u.v 2 def  ^ (3.12) 

R.V~ ~ de___f �89 x~ (3.13) 

Since the P(4) Bianchi identity involves the affine covariant derivative of 
afline tensorial fields, the resulting object is tensorial and therefore transla- 
tionally invariant. Hence the Bianchi identity and the equations that result 
from it must be translationally invariant, as can be readily verified by the 
substitution of the transformation equations (2.2) and (2.3) into equations 
(3.10) and (3.11). Consequently we may express equations (3.10) and (3.11) 
in the 8 translational gauge with complete generality as follows: 

Vr,(sq))~l ' + RL,~ " 4~IB ] = 0 (3.14) 

and 

V, (8@) ,*~ + R"*"=L~ = 0 (3.15) 

We shall now consider contractions of these two equations. 
If  we contract equation (3.14) on the indices/~ and 7, we obtain 

VuV. /~  _3 u0 5V (~[~fl~]) - 2Vt~Oq~tn = R~,~ff" n - R~ff"~, + R~,~,~" ff'~, (3.16) 

where we have used the identity 

V~ % ~ "  = - V.V.  F~B - 37"(8@[,~]) 

On the other hand, contraction of equation (3.15) on the indices v and 
2 results in the equation 

V"(oq~ *) = 0  (3.17) 

The second term in equation (3.15) vanishes upon contraction on v and Z 
due to the symmetries of the Riemannian curvature tensor. 
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4. CONSERVATION OF CHARGE IN THE P(4) THEORY 

When equation (2.14) is substituted into equation (3.17) we obtain 

V,J" = 0 (4.1) 

Thus, in the P(4) theory, magnetic charge is conserved as an identity of the 
geometry. On the other hand, conservation of electric charge has been 
shown (Chilton and Norris, 1992) to be a consequence of the symmetries 
of the P(4) Lagrangian. 

Conservation of magnetic charge in P(4) electromagnetism therefore 
appears to be the analog of conservation of stress-energy-momentum in 
general relativity. While it is not possible to contract the R 4. component of 
the Bianchi identity [equation (3.10)] twice due to the fact that a second 
contraction must necessarily be on an antisymmetric pair of indices, one 
may still draw a parallel between the derivation of equation (4.1) and an 
alternative derivation (Synge, 1960) of the conservation of the stress-en- 
ergy-momentum tensor in general relativity. Recall that if one forms the 
double dual curvature tensor, 

def  
*R ~p~ = ~el .~t~v_~zkD~ ~'~v~k (4.2) 

then the Riemannian Bianchi identity may be written as 

V~ *R ~ --- 0 (4.3) 

Contracting the indices/3 and ~ gives 

V,, *R ~''~ = 0 (4.4) 

where 
def 

*R~ = gt~ ,R~t~ = R~ -~gx-~~ (4.5) 

Using the Einstein field equations, one obtains 

V~T ~ -= 0 (4.6) 

Thus the conservation of stress-energy-momentum in general relativity and 
the conservation of magnetic charge in the P(4) theory both are obtained 
by a single contraction of the respective Bianchi identities in dual form. 

It is important to note that the fact that we have obtained a conserva- 
tion law for magnetic charge is ultimately due to the fact that we originally 
identified the ~4, connection component in the 8 gauge with the negative 
of the generalized Maxwell field strength tensor f f - - F  + M* [see (2.8)]. 
This was done in order to model the Lorentz force law of electrically 
charged particles as an affine 4-momentum geodesic. However, an alternate 
approach is available. 
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Let us define 
def 

~K~v = -(F~v § ~F*v) (4.7) 

where F~v is the standard U(1) field strength tensor and ~ is assumed to be 
a small constant. Note that this is equivalent to setting Muv = ~F,v in 
equation (2.8a). This is a very special case of (2.8), since generally F~v and 
M*~ are independent. In this special case we have 

= 2(V~FT'a - otVpF~t ~) 

However, VaF ;~ = 0 and therefore 

V~ ~ * ~  = -~V~ V~F ~ = - ~  V~J ~ = 0 

We see therefore that if we make the identification (4.7) we obtain 
conservation of electric charge, rather than magnetic charge, as a conse- 
quence of the geometry. This is not completely satisfactory, however, since 
when one inserts (4.7) into equation (2.6), one obtains 

Du ~, 
- c(F~'v + ~FU*~)u ~ (4.8) 

Ds 

The effect of this alternative approach therefore is that the Lorentz force 
law is generalized. Equation (4.8) describes the motion of a particle with an 
electric charge-to-mass ratio E and a magnetic charge-to-mass ratio ~E 
(Schwinger, 1969). 

5. ELECTROMAGNETIC WAVES IN THE P(4) THEORY 

In order to deduce the physical significance of equation (3.16), we 
assume the field equations (2.13) and (2.14) and we also assume that 
J~ = 0, which implies that ~ 1 = 0. Equation (3.16) therefore reduces to 

D P ~  - R ~ P ' a  + R ~ P ' ~  - R ~ J  P'~ = 2Vt~Jpl (5.1) 

This is the standard wave equation for the Maxwell field strength tensor in 
a curved spacetime, and thus we see that electromagnetic waves occur as an 
identity of P(4) geometry. Note that in contrast to the usual version of the 
electromagnetic wave equation, that is, in terms of the vector potential, this 
wave equation is expressed in terms of the manifestly physical E and B 
fields. 

Hence the possibility of transferring 4-momentum from one point to 
another point via electromagnetic waves occurs as an intrinsic property of 
the geometry of spacetime in the P(4) theory. In the P(4) theory an 
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electromagnetic wave appears as a "rippling" of the anne  vector field 0 
which represents the zero or reference of anne  4-momentum. In order to 
see that this rippling does in fact occur due to the passage of an electro- 
magnetic wave, one must be able to compare the field at neighboring points 
in spacetime. This may be accomplished by utilizing the electromagnetic 
anne  differential transport law first introduced by Norris (1985). 

If the 0 anne  vector field is defined at a point Pl in Minkowski 
spacetime, then one may transport it to a neighboring point P2 along any 
curve ?) which joins Pl and P2. The transported zero of 4-momentum will be 
an anne  vector ~ defined at P2 given by 

Alternatively one may write 

0Z(p2) = --q .I F~ dx~ (5.3) 

where 
def 

0~(p2) = [6(0(p2), 2(p2))] ~ (5.4) 

is the total 4-impulse imparted to a charge q which is constrained to move 
along the path ~. The transported zero of anne  4-momentum is in general 
a path-dependent quantity that is path independent if and only if %b,v a - 0. 

To illustrate the rippling of the 0 field, we consider a simple example. 
Suppose an electromagnetic wave of the form 

F ~  = F~'~ sin[k~x"] 

where /e)- is a constant skew-symmetric tensor and k~ is a null vector, 
passes the origin of the Minkowskian coordinate system, which we take to 
be the point Pl = (0, 0, 0, 0) where the 8 field is initially defined. Then we 
may integrate along the time line to any point P2 of the form P2 = (t, 0, 0, 0) 
as follows: 

F'0 0 
= ()(P2) ~ [q ~o C~176 l ~xZ p2 (5.5) 

This result is clearly periodic. A free charged particle initially located at the 
origin will begin to oscillate due to the changing of the 0 affine vector field. 
In terms of the P(4) theory, this is because a free charged particle must 
follow an affine 4-momentum geodesic (D~/Ds = 0) and since r2 = 8 (~ r~, if 
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6 changes, then z~, the observed 4-momentum, must change in just the 
proper amount to counterbalance the change in the 8 field. This may be 
compared with the Riemannian geodesic equation for free uncharged 
particles. In that case the components of the 4-velocity, defined relative to 
any linear frame, must change in just the proper amount to counterbalance 
the linear curvature-induced change in the reference frame. 

The fact that the standard electromagnetic wave equation for the 
Maxwell field strength tensor occurs as a geometrical identity in the P(4) 
theory gives the P(4) theory one other feature not shared by general 
relativity, and that feature is the existence of a practical mechanism within 
the geometry of the theory which allows the determination of the null 
subspaces of local tangent spaces. Although general relativity predicts the 
existence of gravitational waves which propagate at the velocity of light, to 
date no such waves have been observed, and so, as a matter of practicality, 
one must appeal to a nongeometrical source of information, e.g., electro- 
magnetic waves, to determine the null subspaces. In the P(4) theory one 
still must observe electromagnetic waves in order to determine the null 
subspaces, but in the P(4) theory the information is built into the geome- 
try. Furthermore, once the null subspaces have been determined, one may 
determine the metric tensor of spacetime up to a constant conformal factor 
(Hawking and Ellis, 1973). 

6. A C O M P A R I S O N  WITH WAVES IN GENERAL RELATIVITY 

In Section 5 we have shown that electromagnetic waves occur as an 
identity in the P(4) geometry. As we have mentioned above, there is an 
analogous result in general relativity, namely the wave equation for the 
rank-3 tensor field H=,~ = -H,=  7 known as the Lanczos spin tensor. This 
tensor was shown by Lanczos (1962) to exist for all Riemannian space- 
times. Furthermore, it can be said to serve as a potential for the Weyl 
conformal curvature tensor Cvw#, where 

I 
C~,v~,~ = R~,v~,~ + g~t~, Rnlv - gvt~, Rnl~, - gg~,t~,gnlv R (6.1) 

Specifically, Lanczos showed that the Weyl conformal curvature tensor can 
be rewritten as 

+ �89 + g~,.) - g~n(H~,~ + H~,)  

+ g:,v(Hn~, + H~,~) -- g~,~,(H~n + Ht~,)] (6.2) 

where we have introduced the notation Hu) " = VvH~,V~. In the above relation 
we have also imposed the standard Lanczos "algebraic conditions," namely 
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Ht,a~ j = 0 and H,a~= 0, as well as his "differential condition" V~Har~' = 0. 
The first contracted Riemannian Bianchi identities in conjunction with 
relation (6.2) leads to the following wave equation for H~a~: 

DH~a~ + R~,r~H a ~' _ Ra~,~H ~ ~' _ R~a,~,H~ TM 

+ (R~v~,~gar -- Ravu~g~) H~'~ -- R~ ~ Hrv~ + Rav H r ~  - 1~ ~ H ~  

= �89 - ~gr - �89 - ~g~rR) (6.3) 

The above wave equation for the Lanczos tensor is an identity of the 
Riemannian geometry. This geometrical identity has physical meaning only 
when field equations are assumed. Indeed, if the Einstein equation 

1 I--- T~v ( 6 . 4 )  R~ - ~g~ R 

is used in (6.3), the right-hand side can be rewritten as Vt~,Jt~r, where 
Jar = Ta~ , -  1~'3gaiT represents the gravitational sources for the Lanczos 
spin tensor. Clearly these results are analogous to the contraction of the 
R 4. component of the P(4) Bianchi identity as given in (3.16) and its 
corresponding reduction to a physically measurable quantity, namely (5.1), 
which arises when the Maxwell field equations are imposed. These wave 
equations arise from Bianchi identities and suggest a strong parallel be- 
tween the Weyl and ~4. curvature tensors. 

This analogy can be made more concrete. Recall that all contractions 
of the conformal curvature tensor vanish, which follows from the decom- 
position as given in (6.1). We can make a similar decomposition of the ~4, 
curvature. In a general translational gauge/" we define 

d e f ^  
2 7 rC~a~ = 'r + grt~( r - gr'(rr (6.5) 

As with the Weyl conformal curvature tensor, all traces of ?C~a~ are zero. 
Furthermore, it satisfies ;Ct~ar I = 0. In the zero translational gauge we may 
write ~ r as 

+ g~, V r  - gra V-P, ~] (6.6) 

which is similar in form to relation (6.2). 
Thus the Bianchi identities lead to wave identities for the "potentials" 

H~a r and ~ = -ff~a of the Weyl and •4. curvature tensors, respectively. 
These identities become physically significant once the appropriate field 
equations are imposed, namely, the Einstein and Maxwell equations, 
respectively. The above analysis implies that the R 4. component of the P(4) 
connection ~K~ may play a role in P(4) electrodynamics which is analogous 
to the role of the Lanczos tensor H~a r in standard general relativity. 
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7. CONCLUSIONS AND DISCUSSION 

The fundamental principle of the P(4) theory of gravitation and 
electromagnetism is to model the energy-momentum spaces of classical 
charged particles as affine spaces. The immediate consequence of this 
generalization is the geometrization of the Lorentz force law as the 
geodesic equation of a generalized geometry for spacetime: P(4) geometry. 
As a result of this generalization, more physical phenomena than before are 
recognized as fundamentally geometrical in character. 

In this paper we have been concerned with those phenomena occurring 
by virtue of the Bianchi identities for that extended geometry beyond those 
inherent in the Riemannian Bianchi identities alone. These are, namely, 
electromagnetic waves and conservation of magnetic charge. In both cases 
we have demonstrated close structural parallels between P(4) electromag- 
netism and general relativity with regard to the manner in which their 
respective identities are obtained. 

In Section 3 we formed the contraction of the ~4. component of the 
P(4) Bianchi identities in dual form. When this was combined with the 
Einstein-Maxwell affine field equations in Section 4, the result was an 
expression for the conservation of magnetic charge. The technique used to 
achieve this result is closely parallel to an alternative derivation of the 
conservation law for the stress-energy-momentum tensor in general relativ- 
ity. With a slightly different identification of the R 4. component of the 
connection [equation (4.7)], the same technique was used to derive an 
expression for the conservation of electric charge. The identification, how- 
ever, leads to a generalized Lorentz force law [equation (4.8)] that includes 
a magnetic charge term. In Section 3 we also formed a contraction of the 
~4, component of the P(4) Bianchi identity in undualed form, and this 
yielded in Section 5 the wave equation for the Maxwell field strength tensor 
when Maxwell's equations were assumed. In the P(4) theory electromag- 
netic waves are interpreted as ripples in the 8 affine gauge field, which 
defines the local zeroes of affine 4-momentum. A free charged particle 
experiencing a fluctuation in its zeros of 4-momentum must begin to 
oscillate relative to inertial frames in order to follow an affine 4-momentum 
geodesic. It is in this manner that 4-momentum is transferred to charged 
particles by an electromagnetic wave. 

Furthermore, consideration of the transmission of 4-momentum via 
electromagnetic waves in the context of the P(4) theory serves to complete 
our philosophical view of tee information contained in the Bianchi identi- 
ties. The Riemannian Bianchi identities tell us, via Poynting's theorem, that 
when the 4-momentum contained in an electromagnetic field is allowed to 
move through space, the change in the amount of 4-momentum contained 
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in a volume of space is equal to the flux of 4-momentum across the 
boundary. The Riemannian Bianchi identities, however, neglect to inform 
us as to just how the 4-momentum is to be transported, and this is one 
service which the R 4. component of the P(4) Bianchi identities performs: 
4-momentum may be transferred via electromagnetic waves. 

As we have demonstrated in Section 6, the analog of the electromag- 
netic wave equation in general relativity is the wave equation for the 
Lanczos H-tensor. Furthermore, we have shown a decomposition of the 
E4. curvature which is similar to the decomposition of the Riemannian 
curvature tensor into the Weyl tensor and terms depending on the Ricci 
tensor, the scalar curvature, and the metric tensor. These observations may 
be very significant for the following reason: throughout this paper and 
others in the literature the structural similarities between P(4) electrody- 
namics and general relativity have been exploited in order to clarify the 
interpretation of various aspects of P(4) electrodynamics. In this case, as 
we have mentioned, it is the object associated with general relativity, that 
is, the Lanczos tensor, which is in need of illumination. It is thought by 
some that the Lanczos tensor may be fundamentally associated with 
gravitational radiation, and the parallels noted in this paper seem to bear 
out that interpretation. But is it truly the R 4. component of the P(4) 
connection ~K~v which is the analog of the Lanczos tensor? In order to be 
certain, one should produce the analog of the Lanczos tensor by the same 
method used by Lanczos: a variational principle. It is our intention to 
address this issue in future publications. 

Throughout this paper we have pointed out parallels between general 
relativity and P(4) electrodynamics. In conclusion, we wish to summarize 
these similarities and contrast them with the standard interpretation of 
electrodynamics as a U(1) gauge theory. These results are summarized in 
Table I. Note that in both general relativity and P(4) electrodynamics there 
is a three-tiered hierarchy of geometrical objects: the curvature is con- 
structed from the connection and its derivatives and in certain cases, when 
the linear geometry is Riemannian or when the generalized affine connec- 
tion is expressed in the 0 gauge, the connection may be expressed in terms 
of a potential or potentials and their derivatives. In contrast, the U(1) 
connection A, is not eonstructable from a potential. Furthermore, for both 
general relativity and P(4) electrodynamics, sources appear in the field 
equations at the level of the respective contracted curvatures, whereas in 
U(1) electrodynamics, sources appear at one higher differential order. Thus 
we see that when viewed from the perspective of the differential structure of 
the P(4) theory, gravity and electromagnetism seem very much alike, 
whereas U(1) electromagnetism seems very different. In addition, P(4) 
electrodynamics differs fundamentally from the standard U(1) interpreta- 
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tion of the electromagnetic field in that the P(4) theory is capable of fully 
accommodating the two-potential formalism of Cabibbo and Ferrari 
(1962). Recall that not only do the two potentials in the Cabibbo-Ferrari 
theory each possess the U(1) gauge freedom, but also they collectively 
possess the freedom of the so-called mixing transformation. 
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